.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/01_temporalTimeSeriesAnalysis/plot_signalPlusNoise.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_01_temporalTimeSeriesAnalysis_plot_signalPlusNoise.py: Generation of a signal plus noise time series ============================================= .. GENERATED FROM PYTHON SOURCE LINES 7-9 Import requirements ------------------- .. GENERATED FROM PYTHON SOURCE LINES 9-15 .. code-block:: Python import os import numpy as np import plotly.graph_objects as go import plotly.subplots .. GENERATED FROM PYTHON SOURCE LINES 16-18 Define variables ---------------- .. GENERATED FROM PYTHON SOURCE LINES 18-27 .. code-block:: Python srate = 1 T = 200 # sec sigma_low = 1.0 sigma_high = 25.0 A = 2.0 omega = 1.0/50 phi = 2*np.pi*15/50 .. GENERATED FROM PYTHON SOURCE LINES 28-31 Create white noise ------------------ .. GENERATED FROM PYTHON SOURCE LINES 31-37 .. code-block:: Python time = np.arange(0, T, 1.0/srate) N = len(time) w_low = np.random.normal(loc=0, scale=sigma_low, size=N) w_high = np.random.normal(loc=0, scale=sigma_high, size=N) .. GENERATED FROM PYTHON SOURCE LINES 38-41 Create signal plus noise time series ------------------------------------ .. GENERATED FROM PYTHON SOURCE LINES 41-46 .. code-block:: Python signal = A*np.cos(2*np.pi*omega*time+phi) signalInNoise_low = signal + w_low signalInNoise_high = signal + w_high .. GENERATED FROM PYTHON SOURCE LINES 47-50 Plot signal plus noise time series ---------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 50-75 .. code-block:: Python fig = plotly.subplots.make_subplots( rows=3, cols=1, subplot_titles=(r'$2\cos(2\pi t + 0.6\pi)$', r'$2\cos(2\pi t + 0.6\pi)+N(0,1)$', r'$2\cos(2\pi t + 0.6\pi)+N(0,25)$')) trace = go.Scatter(x=time, y=signal, mode="lines+markers", line=dict(color="black"), showlegend=False) fig.add_trace(trace, row=1, col=1) trace = go.Scatter(x=time, y=signalInNoise_low, mode="lines+markers", line=dict(color="black"), showlegend=False) fig.add_trace(trace, row=2, col=1) trace = go.Scatter(x=time, y=signalInNoise_high, mode="lines+markers", line=dict(color="black"), showlegend=False) fig.add_trace(trace, row=3, col=1) fig.update_xaxes(title_text="Time (sec)", row=3, col=1) if not os.path.exists("figures"): os.mkdir("figures") fig.write_html("figures/signalPlusNoise.html") fig.write_image("figures/signalPlusNoise.png") fig .. raw:: html


.. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.291 seconds) .. _sphx_glr_download_auto_examples_01_temporalTimeSeriesAnalysis_plot_signalPlusNoise.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_signalPlusNoise.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_signalPlusNoise.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_signalPlusNoise.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_